Code: CS3T1

II B. Tech - I Semester - Regular Examinations - December 2014

MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Marks: 5x14=70

Answer any FIVE questions. All questions carry equal marks

- 1 a) Construct the truth tables for the following formulas. 7 M
 - i) $(P^{(P\rightarrow Q)}\rightarrow Q)$
 - ii) $(P \leftrightarrow Q) \leftrightarrow ((P^{\wedge}Q)V \sim P^{\wedge} \sim Q))$
 - b) Show that the following implications. 7 M
 - $i) (P^Q) = (P \rightarrow Q)$
 - ii) $(P \rightarrow (Q \rightarrow R)) => (P \rightarrow Q) \rightarrow (P \rightarrow R)$
- 2 a) Define Normal form and obtain PDNF for the following.

7 M

- i)~PVQ ii) (P^Q)V (~P^R) V (Q^R)
- b) Define PCNF obtain PCNF for the following.
 i)(~P→R) ^ (Q↔P) ii) Q^(PV~Q)
- 3 a) Define Rule P, Rule T. Show that SVR is Tautologically implied by (PVQ) ^(P→R) ^ (Q↔S)
 - b) Prove by mathematical induction that $6^{n+2} + 7^{2n+1}$ is divisible by 43 for each Positive integer n. 7 M

- 4 a) Write the two basic counting principles. How many different license plates are there that involve 1,2 or 3 letters followed by 4 digits?
 - b) How many integral solutions are there to x1+x2+x3+x4+x5=20 where $x1\ge3$, $x2\ge2$, $x3\ge4$, $x4\ge6$ and $x5\ge0$? 7 M
- 5 a) Solve the recurrence relation a_n - $7a_{n-1}$ + $16a_{n-2}$ - $12a_{n-3}$ =0 for $n \ge 3$ with the initial conditions a_0 =1, a_1 =4 and a_2 =8 by the method of characteristic roots.
 - b) Solve the recurrence relation $a_n=a_{n-1}+f(n)$ for $n\ge 1$ by substitution.
- 6 a) Define equivalence relation. Let x= {1, 2,.....7} and R= {(x,y)/(x-y) is divisible by 3}.

 Show that R is a equivalence relation. Draw the graph of R.

 7 M
 - b) Let $x=\{2,3,6,12,24,36\}$ and the relation \leq be such that $x\leq y$ if x divides y. Draw the Hasse diagram of (x,\leq) . 7 M
- 7 a) Explain Warshall's Algorithm with Example. 7 M

b) Define directed graph and Adjacency matrix. Draw the graph for the following adjacency matrix.

7 M

8 a) Define isomorphism of graph. Are the two following graphs are isomorphic or not?

7 M

b) Define Hamiltonian graph. Write the basic rules for constructing Hamiltonian paths and cycles.

7 M